●在算法過程中頻繁的數(shù)據(jù)混洗使得NTT難以在計(jì)算集群中分布,無法并行計(jì)算,并且由于需要從大型數(shù)據(jù)集中加載和卸載數(shù)據(jù),在硬件上運(yùn)行時(shí)需要大量帶寬。即使硬件操作很快,這可能也會(huì)導(dǎo)致速度變慢。例如,如果硬件芯片的內(nèi)存為16GB或更少,那么在100GB的數(shù)據(jù)集上運(yùn)行NTT將需要通過網(wǎng)絡(luò)加載和卸載數(shù)據(jù),這可能會(huì)大大降低操作速度。
簡單來說,在其他參數(shù)相同或者差不多的情況下,內(nèi)存和帶寬綜合決定終某個(gè)硬件在Aleo項(xiàng)目上的算力大小。
帶寬這個(gè)概念估計(jì)很多人不是很了解,之前只是關(guān)注顯存,雖然說目前Aleo官方還沒有正式公布的PoSW算法,但是從目前的表述來看把NTT/FFT這個(gè)漏洞堵上是個(gè)必然,而且本身零知識(shí)證明算法是對NTT/FFT有要求的。
既然共識(shí)是POS的,自然也就不怕ASIC控制網(wǎng)絡(luò),壓根也控制不了,也就不存在分叉的問題,而且從算法和定位的角度上來說,ASIC也是必然需求。Aleo芯片機(jī),Aleo-ASIC,zktaoma或者maxsayss
早在2021年,英偉達(dá)就曾公開表示過“禁止使用轉(zhuǎn)換層在其他硬件平臺(tái)上運(yùn)行基于CUDA的軟件”,2024年3月,英偉達(dá)更是將其升級(jí)為“CUDA禁令”,直接添加在了CUDA的終用戶許可協(xié)議中,已禁止用轉(zhuǎn)譯層在其他GPU上運(yùn)行CUDA軟件