從算法的角度上來看,Aleo屬于零知識證明(ZKP)賽道項目,復雜度是比大餅和以太坊算法都要復雜的。算法的核心計算我們之前也提過主要是MSM+NTT/FFT的計算,還會包含一些Hash運算。這些計算主要目的是為了生成零知識證明,而生成證明的速度直接會影響生態(tài)的體驗。
綜上來看,內存和帶寬是限制證明生成的主要瓶頸。對于顯卡來說,這里的內存指的是顯存,并不是主板上的內存,主板上的內存主要是參與CPU的計算。當然目前有些芯片技術可以打通主板上的內存和顯存,讓內存為顯存計算來用。
按照官方的設想和規(guī)劃未來在Aleo上每天的交易量都是上億美金的規(guī)模,在這樣大數(shù)據(jù)量的要求下,每時每刻都有證明需要被委托出去在極短的時間內完成證明的生產,不可能指望顯卡能解決這個問題。就像AI大模型訓練一樣,早期數(shù)據(jù)量和參數(shù)少的情況下可以用消費級顯卡,但是現(xiàn)在更多的都是為AI訓練設計的專用芯片和機器。
在分析之前,我們先看一下ASIC(Application Specific Integrated Circuit),中文全稱是“專用集成電路”。這里特別強調“專用”,“專用”意味著針對單一項目來說會更加有競爭力。相對比,GPU(顯卡)是通用計算處理芯片,所以在單一項目上來說“專用”肯定比“通用”更有競爭力。