硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數據多任務處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎上,無論是計算能力和功耗性能上都要更強,缺點是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
證明生成的過程中,約有60%的時間花在MSM上,其余時間由NTT/FTT主導。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:
●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當處理大型數據向量時,例如6700萬個參數,乘法運算可能仍然很慢,并且需要大量的內存資源。此外,MSM存在可擴展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。
由于Aleo在隱私模式下,每筆交易都需要生產零知識證明,而且需要在很短的時間內完成,這樣生態(tài)的體驗才是流暢的且能大規(guī)模發(fā)展,所以基于這個背景需求,才會有Aleo的隱私委托代理計算方案,也就是在誕生Aleo項目的論文中大篇幅講解的:誕生Aleo項目的論文完整中文版翻譯—Zexe實現去中心化的私有計算,Aleo芯片機,Aleo-ASIC,zktaoma或者maxsayss
雖然PoW的周期是10年,不代表說10年后ASIC就不需要了,只要隱私委托代理計算方案還存在,那么ASIC其實是一直需要的。
總結,從算法、定位和共識三個方面綜合來看,Aleo都和以往的其他公鏈項目有本質上的差別,而ASIC對于Aleo來說是必需的硬件設備,就好比專用顯卡/芯片對于AI大模型訓練是一樣的道理,所以官方明確表態(tài)支持ASIC也在情理之中,而且無論從Token價格、內存、帶寬、成本、回本周期等因素長期來看,ASIC都是選擇。