大多數(shù)麥克風都是駐極體電容器麥克風(ECM),這種技術已經(jīng)有幾十年的歷史。ECM 的工作原理是利用具有電荷隔離的聚合材料振動膜。與ECM的聚合材料振動膜相比,MEMS麥克風在不同溫度下的性能都十分穩(wěn)定,不會受溫度、振動、濕度和時間的影響。由于耐熱性強,MEMS麥克風可承受260℃的高溫回流焊,而性能不會有任何變化。由于組裝前后敏感性變化很小,這甚至可以節(jié)省制造過程中的音頻調(diào)試成本。目前,集成電路工藝正越來越廣泛地被應用在傳感器及傳感器接口集成電路的制造中。這種微制造工藝具有、設計靈活、尺寸微型化、可與信號處理電路集成、低成本、大批量生產(chǎn)的優(yōu)點。早期微型麥克風是基于壓阻效應的,有研究報道稱,制作了以(1×1)cm2、2μm厚的多晶硅膜為敏感膜的麥克風。但是,在敏感膜內(nèi)不存在應力的情況下,這樣大并且很薄的多晶硅膜的一階諧振頻率將低于300Hz。一階諧振頻率在這樣低的頻段范圍內(nèi)將導致麥克風在聽覺頻率范圍內(nèi)的頻率響應極不均勻(靈敏度的變化量大于40dB),這對于麥克風應用是不可接受的。當敏感膜內(nèi)存在張應力時,其諧振頻率將增大,卻以犧牲靈敏度為代價。當然,可以通過調(diào)整敏感膜的尺寸來獲得更高的一階諧振頻率,但是這仍將減小靈敏度。由此可見,壓阻式方案并不適于微型麥克風的制造 。
聲音的采集角度
與透鏡的焦距有不同的變化一樣,麥克風采集聲音的角度也是各不相同的。心形麥克風可以從多個角度采集聲音。超心形麥克風采集聲音的角度要相對小一些。槍形麥克風采集聲音的角度和前兩者相比更窄。與鏡頭不同,麥克風種類的臨界點并不精密。單人攝錄,也就是不和攝錄組進行的拍攝,麥克風選擇是小型的槍式麥克風 。
速率成正比的電壓信號。動態(tài)麥克風采用永磁體為能量源,基于電感效應將聲能轉換為電能 。
頻響特性:
話筒0°主軸上靈敏度隨頻率而變化的特性。要求有合適的頻響范圍,且該范圍內(nèi)的特性曲線要盡量平滑,以改善音質(zhì)和抑制聲反饋。同樣的聲壓,而頻率不同的聲音施加在話筒上時的靈敏度就不一樣,頻響特性通常用通頻帶范圍內(nèi)的靈敏度相差的分貝數(shù)來表示。通頻帶范圍愈寬,相差的分貝數(shù)愈少,表示話筒的頻響特性愈好,也就是話筒的頻率失真小。
有動圈式、電容式、駐極體和近新興的硅微傳聲器,此外還有液體傳聲器和激光傳聲器。
動圈傳聲器音質(zhì)較好,但體積龐大。
駐極體傳聲器體積小巧,成本低廉,在電話、手機等設備中廣泛使用。
硅微麥克風基于CMOSMEMS技術,體積更小。其一致性將比駐極體電容器麥克風的一致性好4倍以上,所以MEMS麥克風特別適合高性價比的麥克風陣列應用,其中,匹配得更好的麥克風將改進聲波形成并降低噪聲。