(一)隔聲和隔振
通過現(xiàn)場數(shù)據(jù)采集和實地考察,確定待建消聲室位置附近的低頻噪聲源和環(huán)境噪聲,根據(jù)采集結果分析確定設計方案,為了提高隔聲和隔振效果,一般采取與原有建筑完全分離的“房中房”式隔聲結構。
(二)浮筑地面
為了隔絕因撞擊引起的固體聲,采用彈性墊層的浮筑地面進行隔振。其做法是在原地面上鋪上一層15cm厚(經(jīng)壓實后為10cm)的玻璃棉保溫板作為隔振彈性墊層,在它的上面再做一層厚20cm的鋼筋混凝土地板,與外墻留有5cm的問隙,以防止與外墻的剛性連接,隔絕大樓內和戶外固體聲的傳入。
(三)隔墻
在浮筑地面上砌一層厚24cm的磚墻作為內墻,與外墻之間留有20cm的間隙,砌墻磚縫要求砂漿飽滿,以防縫隙漏聲。
(四)隔聲吊頂
考慮到施工和減輕隔聲平頂?shù)闹亓?,采用雙層鋼絲網(wǎng)水泥抹灰,中間留有10cm空氣層的隔聲平頂,其特點是隔聲量高、重量輕。為了使消聲室能獲得盡量大的有效高度,支承樓板的大梁讓其部分向下凸出。
(五)隔聲門
消聲室門具有隔聲和吸聲功能,它由隔聲門和吸聲尖劈門組成,設在與儀器室之間的分隔墻上,安裝有兩道單開鋼質復合結構隔聲門以及內壁的吸聲扯門。其特點是大大縮小一般推拉式吸聲尖劈門所占的空問位置,而且開關也很方便。由于消聲室設計采用了短吸聲尖劈,為此將靠壁面的一組吸聲尖劈朝內安裝,留空檔解決扯門位置。
(六)吸聲尖劈
吸聲尖劈的設計是保證消聲室聲場特性和測試下限頻率的決定因素。為了盡可能增大有效空間,尖劈的長度由截止頻率暨1/4波長理論決定,具體的計算方法為L=1/4*(340/Fc)。其中Fc為截止頻率;340為聲波在空氣中的傳播速度,單位為m/s;L則為要達到截止頻率的吸音消聲尖劈理論上的長度。用4mm的冷拔鋼絲做骨架,內填充環(huán)保型無甲醛吸音消聲材料,采用定制模具切割,切割后整體填充,確保每一個尖劈的外型一致而美觀,無碎棉和棉渣,確保玻璃棉不外漏、內層面采用新型高織數(shù)白色玻璃布整體套裁,接縫處用魔術貼粘接;外層面采用防火的灰白阻燃洞布,整體套裁確保規(guī)格統(tǒng)一,后接縫處都處于尖劈底部,手工封口。
(七)地網(wǎng)結構
為了測試方便,消聲室設有一工作地網(wǎng)。根據(jù)消聲室的高度,地網(wǎng)設在離地面64cm處。工作地網(wǎng)一方面應有足夠的強度和剛度,以保;另一方面不允許地網(wǎng)聲反射影響聲場特性。為此,選用4高強度鋼絲,兩端分別連在固定于墻圈梁上的花籃螺絲和拉鉤上,利用花籃螺絲把鋼絲收緊,使地網(wǎng)保持平直,鋼絲間距為10cm。
地網(wǎng)在靠墻角處設計有一個1m×1m的人孔,以便安裝網(wǎng)下地面上的尖劈,必要時
消聲室的校準原先只在國家標準GB6882或ISO3745《聲學—噪聲源聲功率級的測定—消聲室和半消聲室精密法》中的附錄A規(guī)定了測試聲場地校準程序。2006年發(fā)布了JJF1147—2006《消聲室和半消聲室聲學特性校準規(guī)范》詳細地規(guī)定了消聲室和半消聲室聲學特性地確定和評價。
消聲室主要技術指標有兩項:①自由聲場的頻率范圍和空間范圍 [1] ;②本底噪聲。
本底噪聲地測量相對比較簡單,一般是在消聲室或半消聲室內選擇3 ~5個測點,依次測量各測點處的聲壓級和1 /1 倍頻帶聲壓級,取相應的算術平均值作為該房間的本底噪聲級。
自由聲場的頻率范圍和空間范圍測量過程是將傳聲器按選定的路徑向吸聲壁面方向移動至下一個測點,測點之間的距離相等并不大于0.1 m,終的測點與吸聲壁面的距離應不大于0.75 m,每條測量路徑上的測點數(shù)不少于10個。依次測量各選定路徑所有測點上的聲壓級。
在設計消聲室時應注意:
(1)純音信號的測試項目與寬帶噪聲信號的測試項目對界面吸聲系數(shù)的要求有較大差別。
(2)隨之而來的是關于吸聲結構的設計。
對于要求吸聲系數(shù)≥0.99的吸聲結構,一般采用尖劈形狀。因為多孔性材料的吸聲機理,是材料內部有大量氣流連通的空氣隙,形成細管甚至毛細管,當聲波傳人時,聲波在細管中的振動因內摩擦而轉化為熱能被吸收。吸聲能力與材料的空隙率(如玻璃棉的空隙率達96%左右)、流阻及材料的纖維結構有關。同時.吸聲的頻率特性與材料厚度有關,即吸聲值的下限頻率大約是其厚度相對應的1/4波長的頻率。要使低頻吸聲好,就得增加多孔性吸聲材料的厚度。但由于材料的流阻,不能任意增大厚度來延伸低頻吸收,各種多孔性材料都有其有效厚度。
因此,要使高吸聲特性向低頻擴展,就把多孔性材料做成尖劈形狀。從尖劈結構的截面來看.是從空氣媒質逐漸過渡到多孔性材料,聲阻抗有漸變過程,使聲波能傳人尖劈結構深部并被轉化為熱能消耗掉。
當然,要設計達到0.99以上的吸聲系數(shù).除與材料本身的參數(shù)有關外,還與尖劈的形狀(尖劈的角度和劈部與尖部的比例)有關。尖劈的總長度決定吸聲系數(shù)的頻率(一般稱吸聲系數(shù)大于0.99的頻率為尖劈的截止頻率)。大約為尖劈總長度相應為1/4波長的頻率。如果利用尖劈基部與尖劈后空腔深度的共振吸聲結構.則截止頻率還可稍向低頻延伸。
在寬帶噪聲信號的測試情況,尤其半消聲室中噪聲源聲功率級的測定,很多情況下就不一定采用尖劈吸聲結構的設計。如,在為某企業(yè)設計大型電機的聲功率測定進行半消聲室設計時,采用三層布幕的多共振吸聲結構,在低頻駐波管中試驗不同材質的防火布,改變與剛性壁的安放距離,獲得100Hz以上吸聲系數(shù)大于0.86的結果,很節(jié)省地完成了半消聲室的設計任務。
(3)關于消聲室大小和形狀的考慮。
一般消聲室的建筑造型幾乎不用球狀、柱狀或圓弧面的形狀。因為如果吸聲結構的吸聲系數(shù)完全大于0.99,則殼體形狀的影響不大;但在吸聲系數(shù)甚低于0.99的情況,至少在吸聲結構的截止頻率以下,吸聲系數(shù)急遽下降,則大的凹面會產(chǎn)生聚焦的聲缺陷,完全不可能獲得近似的自由聲場。
對于機器輻射噪聲功率的測試,一般測點都要在設備的四周空間布置,所以多為設計成方形或長方形的半消聲室.其長寬和高度均可估算,即按有關測試標準所要求的測量距離、測量位置、允許與自由聲場的偏差,來確定邊長及高度的尺寸,當然會適當留有余地,還要考慮今后可能有的設備大小。
對于電聲器件的參數(shù)測量,則如果聲源(揚聲器)放在消聲室中心.傳聲器沿軸向或平面對角線方向放置(一般測試距離1m,對于大尺寸的音箱及線陣列等揚聲器系統(tǒng),需要較大的測試距離),則消聲室尺寸就較大。一般考慮是將聲源與傳聲器測試線的中心設在消聲室的中心,并且測試線沿平面對角線方向,消聲室的形狀是長方形.這樣安排使消聲室空間為節(jié)省。建成后進行自由聲場鑒定時,除聲源放在消聲室中心進行測量,得到這種情況下一定偏差(為±ldB,±2dB等)內自由聲場的范圍,另外將測試聲源放在將來安放被測揚聲器的位置.檢測在(平面對角線方向)多遠測試距離上,與理想自由聲場的偏差為多大。
電波混響室是一個電大尺寸且具有高導電反射墻面構成的屏蔽腔室,腔室中通常安裝一個或幾個機械式攪拌器或調諧器,通過攪拌器的轉動改變腔室的邊界條件,進而在腔室內形成統(tǒng)計均勻、各向同性和隨機極化的電磁環(huán)境。
在國內,關于混響室的名稱多種多樣,公開發(fā)表的論文中出現(xiàn)的名稱包括“電波混響室”、“EMC混響室”、“電磁混響室”、“電磁混波室”等。為避免混淆,一方面,考慮到在形式上與另一種傳統(tǒng)意義的電磁兼容測試平臺“電波暗室”一致,比較習慣,也便于區(qū)分和理解;另一方面,在聲學領域,“混響室”使用更廣泛,而“混波室”使用比較少,而且混響室初是借鑒聲學研究中“混響室”的概念,所以有學者建議在國內統(tǒng)一使用“電波混響室”這一名詞。