一般樹脂分為熱塑性樹脂與熱固性樹脂兩大類。熱塑性材料主要具有低溫接著,組裝快速極容易重工之優(yōu)點,但亦具有高熱膨脹性和高吸濕性缺點,使其處于高溫下易劣化,無法符合可靠性、信賴性之需求。而熱固性樹脂如環(huán)氧樹脂(Epoxy)、Polyimide等,則具有高溫安定性且熱膨脹性和吸濕性低等優(yōu)點,但加工溫度高且不易重工為其缺點,但其可靠性高的優(yōu)點仍為目前采用廣泛之材料。
2.5 貼合工藝:平時導電粒子在黏合劑中均勻分布,互不接觸,加之有一層絕緣膜,ACF 膜是不導電的,當對ACF膜加壓、加熱后(一般加壓、加熱分兩次,次為臨時貼在產(chǎn)品上60 ℃~100 ℃, (3~10) ×104 Pa ,2 s~10 s 出貨,第二次為部品搭載時約150 ℃~200 ℃,(20~40) ×104 Pa ,10 s~20 s) 導電粒子絕緣膜破裂,并互相在有線路的部分(因為較無線路部分突起) 擠壓在一起,形成導通,被擠壓后的導電粒子體積是原來的3~4 倍(導電粒子體積不變,差別在於原本是球體狀,經(jīng)過熱壓後變成類似圓餅狀,讓上下電極有更多的面積接觸到導電粒子),加熱使黏合劑固化,保持導通狀態(tài)。一般導通部分電阻在10 Ω以下,未導通部分相鄰端子間在100MΩ 以上。
結構特征:活性炭纖維是一種典型的微孔炭(MPAC),被認為是“超微粒子、表面不規(guī)則的構造以及極狹小空間的組合”,直徑為10 μm~30 μm??紫吨苯娱_口于纖維表面,超微粒子以各種方式結合在一起,形成豐富的納米空間,形成的這些空間的大小與超微粒子處于同一個數(shù)量級,從而造就了較大的比表面積。其含有的許多不規(guī)則結構-雜環(huán)結構或含有表面官能團的微結構,具有極大的表面能,也造就了微孔相對孔壁分子共同作用形成強大的分子場,提供了一個吸附態(tài)分子物理和化學變化的高壓體系。使得吸附質到達吸附位的擴散路徑比活性炭短、驅動力大且孔徑分布集中,這是造成ACF比活性炭比表面積大、吸脫附速率快、吸附效率高的主要原因。
熱壓后,可藉由室溫存放,使樹脂得以緩慢而持續(xù)的進行分子鍵結反應,其接著 強度可隨之逐漸增加。如有需要,亦可采用后熟化反應,以提升其接著強度。后 熟化可以使用 90°C x 60 分鐘。如果產(chǎn)品終需要能通過高溫回焊,則建議采用 兩段式后烤熟化︰90°C x 30 minutes至150°C x 30 minutes,則接著強度可提升到 1.0 kg/cm 以上,也更能承受嚴苛的高溫環(huán)境。
此產(chǎn)品熱壓后具有可修補性,也就是當熱壓后,如果因過度拉扯或操作不良的因素,造成導電性的問題時,可簡單的再以80°C x 5 seconds熱壓即可修補,而無需重工。如果因對位不良而需重工時,只需以丙酮擦拭即可清除干凈。